The CartPole problem is a classic example where DRL is applied to balance a pole on a cart using a DQN.
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
# Initialize environment and parameters
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Build a simple neural network model
model = Sequential()
model.add(Dense(24, input_dim=state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.001))
# Training loop
for e in range(1000):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
action = np.argmax(model.predict(state))
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
model.fit(state, target, epochs=1, verbose=0)
state = next_state
if done:
break
DRL can be used to play Atari games by learning from pixels and game frames using convolutional neural networks.
import gym
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras.optimizers import Adam
# Initialize environment and parameters
env = gym.make('Breakout-v0')
state_size = (84, 84, 4)
action_size = env.action_space.n
# Build a convolutional neural network model
model = Sequential()
model.add(Conv2D(32, (8, 8), strides=(4, 4), activation='relu', input_shape=state_size))
model.add(Conv2D(64, (4, 4), strides=(2, 2), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.00025))
# Training loop
for e in range(1000):
state = env.reset()
state = preprocess(state)
for time in range(500):
action = np.argmax(model.predict(state))
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = preprocess(next_state)
model.fit(state, target, epochs=1, verbose=0)
state = next_state
if done:
break
DRL is applied in autonomous driving to make decisions based on sensor data and environmental conditions.
import carla
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
# Initialize CARLA simulator and parameters
client = carla.Client('localhost', 2000)
world = client.get_world()
state_size = 10
action_size = 5
# Build a simple neural network model
model = Sequential()
model.add(Dense(24, input_dim=state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.001))
# Training loop
for e in range(1000):
state = get_initial_state(world)
state = np.reshape(state, [1, state_size])
for time in range(500):
action = np.argmax(model.predict(state))
next_state, reward, done = perform_action(world, action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
model.fit(state, target, epochs=1, verbose=0)
state = next_state
if done:
break
DRL is used in stock trading to make buy, sell, or hold decisions based on market data.
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
# Initialize stock trading environment and parameters
env = gym.make('StockTrading-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Build a simple neural network model
model = Sequential()
model.add(Dense(24, input_dim=state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.001))
# Training loop
for e in range(1000):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
action = np.argmax(model.predict(state))
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
model.fit(state, target, epochs=1, verbose=0)
state = next_state
if done:
break
DRL is applied to robot navigation tasks, enabling robots to learn how to move through complex environments.
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
# Initialize robot navigation environment and parameters
env = gym.make('RobotNavigation-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Build a simple neural network model
model = Sequential()
model.add(Dense(24, input_dim=state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.001))
# Training loop
for e in range(1000):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
action = np.argmax(model.predict(state))
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
model.fit(state, target, epochs=1, verbose=0)
state = next_state
if done:
break
Newsletter
Subscribe to our newsletter for weekly updates and promotions.
Wiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterCompany
About usCareersPressCompany
About usCareersPressCompany
About usCareersPressLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesCompany
About usCareersPressCompany
About usCareersPressCompany
About usCareersPressLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesAds Policies