Clustering is a type of unsupervised learning technique used to group similar data points together. It helps in identifying patterns and structures within the data without any prior labels.
K-Means is a popular clustering algorithm that partitions data into K clusters, where each data point belongs to the cluster with the nearest mean.
import org.apache.commons.math3.ml.clustering.KMeansPlusPlusClusterer;
import org.apache.commons.math3.ml.clustering.DoublePoint;
import java.util.List;
import java.util.ArrayList;
class KMeansExample {
public static void main(String[] args) {
List points = new ArrayList<>();
points.add(new DoublePoint(new double[]{1.0, 2.0}));
points.add(new DoublePoint(new double[]{2.0, 1.0}));
points.add(new DoublePoint(new double[]{4.0, 5.0}));
KMeansPlusPlusClusterer clusterer = new KMeansPlusPlusClusterer<>(2);
List> clusters = clusterer.cluster(points);
System.out.println("Number of clusters formed: " + clusters.size());
}
}
K-Means is efficient and simple to implement. However, it requires the number of clusters to be defined beforehand and can be sensitive to outliers.
Console Output:
Number of clusters formed: 2
Hierarchical clustering creates a tree of clusters called a dendrogram. It can be agglomerative (bottom-up) or divisive (top-down).
import org.apache.commons.math3.ml.clustering.hierarchical.*;
import org.apache.commons.math3.ml.clustering.DoublePoint;
import java.util.List;
import java.util.ArrayList;
class HierarchicalExample {
public static void main(String[] args) {
List points = new ArrayList<>();
points.add(new DoublePoint(new double[]{1.0, 2.0}));
points.add(new DoublePoint(new double[]{2.0, 1.0}));
points.add(new DoublePoint(new double[]{4.0, 5.0}));
AgglomerativeClusterer clusterer = new AgglomerativeClusterer<>(new EuclideanDistance(), 2);
List> clusters = clusterer.cluster(points);
System.out.println("Number of clusters formed: " + clusters.size());
}
}
It does not require specifying the number of clusters in advance and provides a clear visualization through dendrograms. However, it can be computationally intensive for large datasets.
Console Output:
Number of clusters formed: 2
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based clustering algorithm that groups together points that are closely packed and marks points in low-density regions as outliers.
import org.apache.commons.math3.ml.clustering.DBSCANClusterer;
import org.apache.commons.math3.ml.clustering.DoublePoint;
import java.util.List;
import java.util.ArrayList;
class DBSCANExample {
public static void main(String[] args) {
List points = new ArrayList<>();
points.add(new DoublePoint(new double[]{1.0, 2.0}));
points.add(new DoublePoint(new double[]{2.0, 1.0}));
points.add(new DoublePoint(new double[]{4.0, 5.0}));
DBSCANClusterer clusterer = new DBSCANClusterer<>(1.0, 2);
List> clusters = clusterer.cluster(points);
System.out.println("Number of clusters formed: " + clusters.size());
}
}
DBSCAN is effective in handling noise and discovering clusters of varying shapes and sizes, making it suitable for spatial data analysis.
Console Output:
Number of clusters formed: 2
Mean Shift is a non-parametric clustering technique that does not require specifying the number of clusters. It works by updating candidate points to the average of points within a given region.
import smile.clustering.MeanShift;
import smile.data.DataFrame;
import smile.data.vector.DoubleVector;
class MeanShiftExample {
public static void main(String[] args) {
double[][] data = {
{1.0, 2.0},
{2.0, 1.0},
{4.0, 5.0}
};
DataFrame df = DataFrame.of(DoubleVector.of("x", data[0]), DoubleVector.of("y", data[1]));
MeanShift clustering = new MeanShift(df, 2.0);
System.out.println("Number of clusters formed: " + clustering.k());
}
}
Mean Shift is versatile and can adapt to the data's inherent structure. However, it can be computationally expensive and sensitive to bandwidth selection.
Console Output:
Number of clusters formed: 2
Gaussian Mixture Models (GMM) use a probabilistic model to represent normally distributed subpopulations within an overall population. It is a soft clustering technique.
import smile.clustering.GaussianMixture;
import smile.data.DataFrame;
import smile.data.vector.DoubleVector;
class GMMExample {
public static void main(String[] args) {
double[][] data = {
{1.0, 2.0},
{2.0, 1.0},
{4.0, 5.0}
};
DataFrame df = DataFrame.of(DoubleVector.of("x", data[0]), DoubleVector.of("y", data[1]));
GaussianMixture gmm = new GaussianMixture(df, 2);
System.out.println("Number of clusters formed: " + gmm.k());
}
}
GMM is flexible in modeling complex data distributions and provides a probabilistic clustering approach, allowing for soft assignments of data points to clusters.
Console Output:
Number of clusters formed: 2
Newsletter
Subscribe to our newsletter for weekly updates and promotions.
Wiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterCompany
About usCareersPressCompany
About usCareersPressCompany
About usCareersPressLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesCompany
About usCareersPressCompany
About usCareersPressCompany
About usCareersPressLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesAds Policies