Merge Sort is a classic example of the divide and conquer approach. It divides the input array into two halves, calls itself for the two halves, and then merges the two sorted halves.
The array is recursively divided until each sub-array contains a single element. These are then merged in a sorted manner.
public class MergeSort {
void merge(int arr[], int l, int m, int r) {
int n1 = m - l + 1;
int n2 = r - m;
int L[] = new int[n1];
int R[] = new int[n2];
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
int i = 0, j = 0;
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
void sort(int arr[], int l, int r) {
if (l < r) {
int m = (l + r) / 2;
sort(arr, l, m);
sort(arr, m + 1, r);
merge(arr, l, m, r);
}
}
}
The function `merge()` is used to merge two halves. The function `sort()` uses recursion to divide the array and call the `merge()` function.
Console Output:
Sorted array: [1, 2, 3, 4, 5, 6]
Quick Sort is another divide and conquer algorithm. It picks an element as a pivot and partitions the given array around the picked pivot.
The array is partitioned into two halves around a pivot element, and the process is repeated for each half.
public class QuickSort {
int partition(int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j < high; j++) {
if (arr[j] <= pivot) {
i++;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return i + 1;
}
void sort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
sort(arr, low, pi - 1);
sort(arr, pi + 1, high);
}
}
}
The `partition()` function places the pivot element at its correct position and places all smaller elements to the left and all greater elements to the right. The `sort()` function recursively sorts the sub-arrays.
Console Output:
Sorted array: [1, 2, 3, 4, 5, 6]
Binary Search is a divide and conquer algorithm that finds the position of a target value within a sorted array by repeatedly dividing the search interval in half.
The search space is halved in each step, focusing on the half where the target value is likely to be present.
public class BinarySearch {
int binarySearch(int arr[], int l, int r, int x) {
if (r >= l) {
int mid = l + (r - l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
}
The function `binarySearch()` checks the middle element of the array. If it matches the target, it returns the index. Otherwise, it recursively searches the left or right half.
Console Output:
Element found at index: 3
Strassen's Algorithm is used for matrix multiplication and reduces the complexity by dividing matrices into sub-matrices and applying the divide and conquer technique.
Matrices are divided into four sub-matrices, and seven multiplications are performed instead of eight.
// Pseudocode representation
void strassenMatrixMultiplication(int A[][], int B[][], int C[][], int size) {
// Base case when size is 1
if (size == 1) {
C[0][0] = A[0][0] * B[0][0];
} else {
// Divide matrices into submatrices
// Compute 7 products using Strassen's formula
// Combine results into the resultant matrix C
}
}
Strassen's Algorithm improves the multiplication complexity by reducing the number of recursive multiplications needed, making it faster for large matrices.
Console Output:
Matrix multiplication result: [[...]]
Karatsuba Algorithm is a fast multiplication algorithm that uses the divide and conquer technique to multiply two numbers more quickly than the traditional method.
The numbers are split into halves, and three multiplications are performed instead of four.
// Pseudocode representation
long karatsuba(long x, long y) {
if (x < 10 || y < 10) return x * y;
int n = Math.max(Long.toString(x).length(), Long.toString(y).length());
int m = n / 2;
long a = x / (long) Math.pow(10, m);
long b = x % (long) Math.pow(10, m);
long c = y / (long) Math.pow(10, m);
long d = y % (long) Math.pow(10, m);
long ac = karatsuba(a, c);
long bd = karatsuba(b, d);
long abcd = karatsuba(a + b, c + d);
return ac * (long) Math.pow(10, 2 * m) + (abcd - ac - bd) * (long) Math.pow(10, m) + bd;
}
The Karatsuba Algorithm reduces the multiplication of two n-digit numbers to at most three multiplications of n/2-digit numbers, significantly increasing efficiency.
Console Output:
Product of numbers: 1234567890
Newsletter
Subscribe to our newsletter for weekly updates and promotions.
Wiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWiki E-Learning
E-LearningComputer Science and EngineeringMathematicsNatural SciencesSocial SciencesBusiness and ManagementHumanitiesHealth and MedicineEngineeringWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWikiCode
Programming LanguagesWeb DevelopmentMobile App DevelopmentData Science and Machine LearningDatabase ManagementDevOps and Cloud ComputingSoftware EngineeringCybersecurityGame DevelopmentWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki News
World NewsPolitics NewsBusiness NewsTechnology NewsHealth NewsScience NewsSports NewsEntertainment NewsEducation NewsWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterWiki Tools
JPEG/PNG Size ReductionPDF Size CompressionPDF Password RemoverSign PDFPower Point to PDFPDF to Power PointJPEG to PDF ConverterPDF to JPEG ConverterWord to PDF ConverterCompany
About usCareersPressCompany
About usCareersPressCompany
About usCareersPressLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesCompany
About usCareersPressCompany
About usCareersPressCompany
About usCareersPressLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesLegal
TermsPrivacyContactAds PoliciesAds Policies